OPEN A DOOR (ZONE PRESSURE - SERIES LEAKAGE DIAGNOSTICS)

FOR OPENING THE DOOR FROM GARAGE TO OUTSIDE

All Doors to Garage Closed (House in winter mode)
Get Blower Door to -50PA WRT Outside

- A Measure House CFM 50 for Door Closed
- B Measure Closed Door Zonal Pressure House WRT Garage
 (If Closed Door Zonal Pressure greater than 25PA you should use other side of this Sheet)

Open Door from Garage to Outside
Get Blower Door Back to -50PA WRT Outside

- C Measure House <u>CFM 50 for Door Open</u>
 Measure Zonal Pressure House WRT Garage (Should be 50)
- D <u>CFM 50 Difference</u> = CFM 50 Door Open CFM 50 Door Closed

Look up Closed Door Zonal Pressure for House WRT Garage on Table

Enter Multipliers into labeled Multiplier Boxes Below Multiply CFM 50 Difference (D) x Multiplier in each row for results

Divide CFM 50 by 10 in each row To Determine Approx. Square inches of Leakage

В	Α	С	D
Closed Door Pressure	CFM 50	CFM 50	CFM 50
House WRT Garage	Door Closed	Door Open	Difference (C-A)

Leakage from Garage to House

(D) CFM 50 Difference	Multiplier		CFM 50	Square Inches
	x	(int)		

Leakage from Garage to Outside

I	(D) CFM 50 Difference	Multiplier	CFM 50	Square Inches
ĺ		x (ext)		

Total Path Leakage

(D) CFM 50 Difference	Multiplier	Maximum CFM 50 Reduction Available
	x (path)	

		Open	Garag	e Doo	r to Oı	utside
	closed pressure		multiply C	multiply CFM50 change		
		H/G	G/O	int	ext	path
I		2	48	1.14	0.14	0.14
		3	47	1.19	0.20	0.19
	.s	4	46	1.24	0.25	0.24
	1001	5	45	1.29	0.31	0.29
	Garage is leakier to the house than it is to the outdoors.	6	44	1.34	0.37	0.34
	ne c	7	43	1.39	0.43	0.39
	to t	8	42	1.44	0.49	0.44
	is	9	41	1.49	0.56	0.49
	ın it	10	40	1.54	0.63	0.54
	the	11	39	1.60	0.70	0.60
	nse	12	38	1.65	0.78	0.65
	ho	13	37	1.71	0.87	0.71
	the	14	36	1.78	0.96	0.78
	r to	15	35	1.84	1.06	0.84
	kie	16	34	1.91	1.17	0.91
	lea	17	33	1.98	1.29	0.98
	e is	18	32	2.06	1.42	1.06
	rag	19	31	2.14	1.56	1.14
	Ga	20	30	2.23	1.71	1.23
		21	29	2.32	1.88	1.32
		22	28	2.42	2.07	1.42
		23	27	2.52	2.27	1.52
		24	26	2.64	2.50	1.64
		25	25	2.76	2.76	1.76
		below here	you should _l	probably us	e other side	of card
		26	24	2.89	3.04	1.89
		27	23	3.03	3.36	2.03
		28	22	3.18	3.73	2.18
		29	21	3.35	4.14	2.35
		30	20	3.54	4.61	2.54
		31	19	3.74	5.15	2.74
		32	18	3.97	5.77	2.97
		33	17	4.23	6.50	3.23
		34	16	4.51	7.36	3.51

Anthony Cox and Collin Olson, 2006

4.83

8.38

3.83