

Electric Baseload

Rana Belshe
Conservation Connection Consulting

Introduction to this web-posted pdf

There are a few more slides than were presented in the session, including a last slide that lists various things that have contributed to "high bill complaints" through the years.

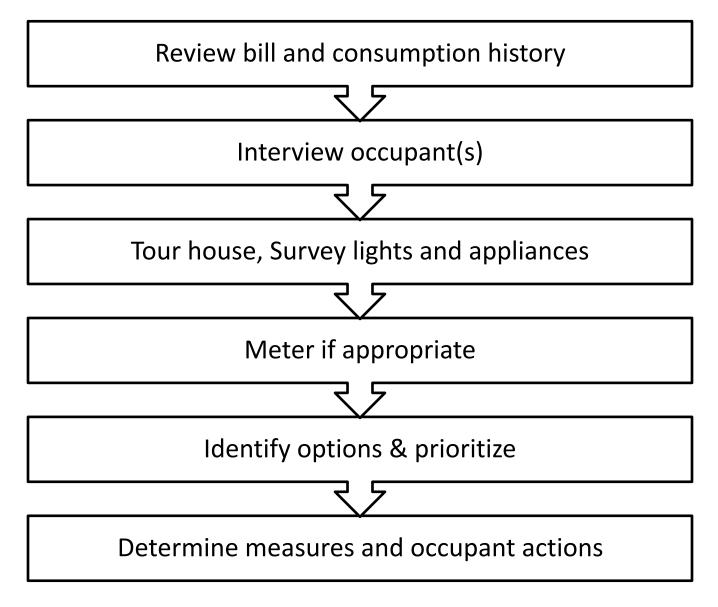
Enjoy!

Session Objectives

- Explore how baseload energy use fits into whole house systems thinking
- Learn how CFL bulbs save energy over incandescent bulbs, including products and savings calculators
- Review primary (water heating, lighting, refrigeration) and secondary (plug load) savings opportunities
- Reflect on the importance of occupant choices to achieving savings

What is Baseload?

Household Electric Use
Baseload + Seasonal = Total

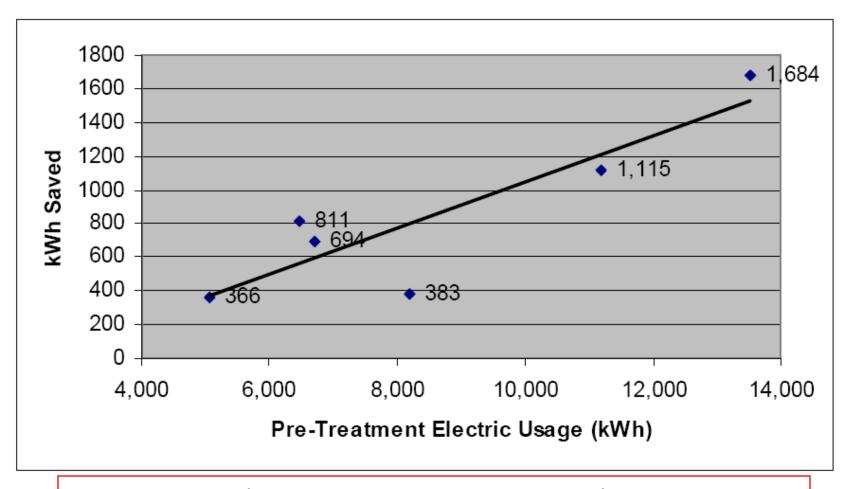

- Baseload: Electricity that powers things—lights and appliances--used year round
- Seasonal load: Electricity used to provide heating, cooling, often dehumidification

The goal is to understand how a particular household uses electricity, identify the possibilities for reducing that use and dialogue with the occupant for the best possible outcomes.

Reasons to Address Baseload

- Sometimes, reducing electric baseload can guarantee better savings than measures geared toward reducing the cost of heating and/or cooling: Savings Follows Use.
- Plug loads across the country are increasing.
- Electric energy waste by energized equipment not in active use is increasing.

General Baseload Analysis Workflow



Annual End Use Consumption Ranges (kWh)

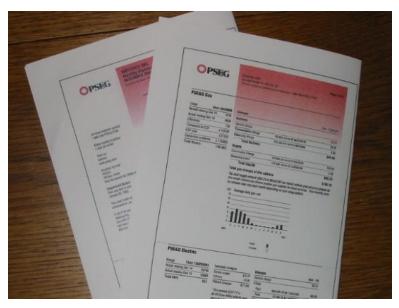
Electricity Use	LOW	MID	HIGH
Baseload	2250	5000	8000
Domestic Hot Water			
Hot water use, 1-3 people	2500	4500	6000
Hot water use, 3-6 people	4000	6000	8000
Cooling			
Cooling load (total household)	750	1500	2500
Heating			
Electric heat load	2000	5000	8500

National averages trued up to PA utility program experience

Savings Follows Use / Waste

The best SIR (savings to investment ratio) will be where use, waste & costs are high.

What is Electricity?

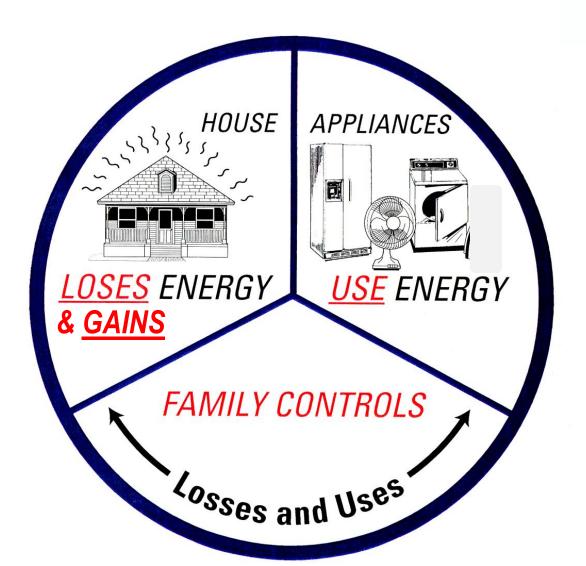

"Electricity originates inside clouds. There it forms lightning, which is attracted to the earth by golfers. After entering the ground, the electricity hardens into coal, which, when dug up by power companies and burned in big ovens called "generators," turns back into electricity, which is sent in the form of "volts" (also known as "watts" or "rpm" for short) through special wires with birds sitting on them to consumers' homes, where it is transformed by TV sets into commercials for beer, which passes through the consumer and back into the ground, thus completing what is known as a "circuit."

Electricity: Energy & Power

Energy

From meter to utility bill power over time

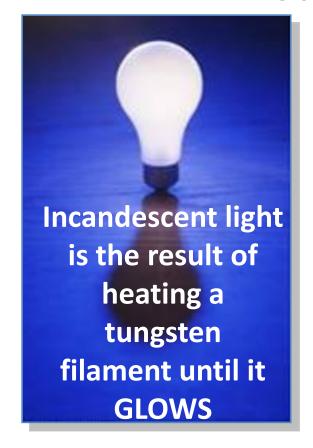
- Watt hour Wh
- kiloWatt hour kWh (1,000 Wh)


Power

Nameplate – potential – instantaneous demand

- Watt W
- kiloWatt (1,000 W) kW
- Watt together voltage and current give power. Something that uses one Watt can move one joule per second.

Whole House (Systems) Thinking

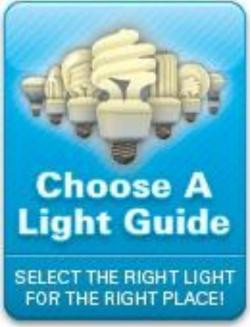


Lighting

- Average number of sockets/bulbs per house?
- How much more efficient than incandescents are CFLs?
- What does the term "lumen" describe?
- Who has ever used this formula?

```
Watts x hours = Watt hours (Wh)
Wh x .001 = kiloWatt hours (kWh)
kWh x $/kWh = Cost to operate
```

Incandescent vs. CFLs



1) Electrodes take electrical energy from the power supply and generate moving electrons. 2) The moving electrons collide with mercury atoms in the tubes to make ultraviolet light. 3) The white phosphor coating of the tubes converts the ultraviolet light into visible light (that we can see)

First, Choose Energy Star

- Select the best bulb for the family & fixture
 - Shape
 - Highest lumens per Watt
 - Color quality
 - Dimmability
 - Location
- Use Lumen equivalency, not Watts
- Be aware of weight and overheating
- Electronic interference
- Make arrangements for premature failure
- Mercury content/disposal

CFLs and Mercury

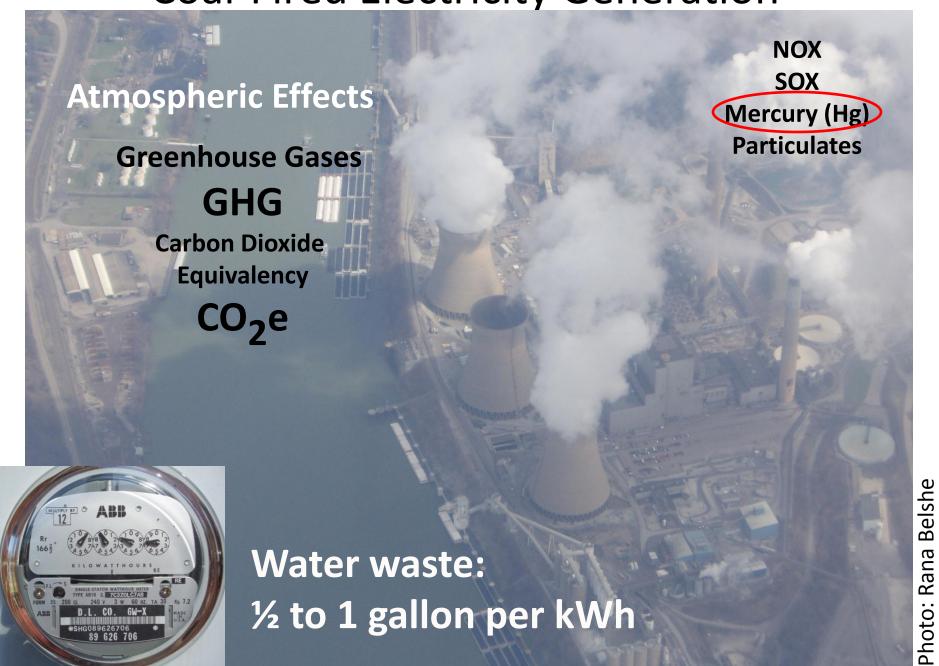
- Over a five year period, an incandescent bulb uses electricity equal to 10 mg of mercury emissions from a coal-fired plant.
- A CFL may contain 1- 4 mg of mercury, but "uses" only 2.4 mg worth of emissions from electricity.
- Mercury in a CFL is contained and is recycled with proper disposal*. Once out of the smokestack mercury is uncontrollable.

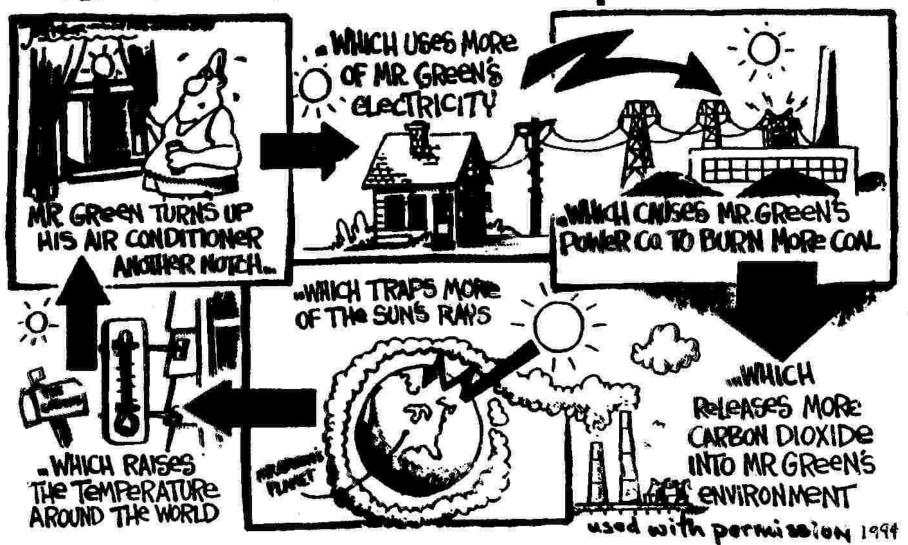
* Recycle locally or check www.Earth911.org

Value-Added Education

Buy Low-Mercury (Hg) Bulbs

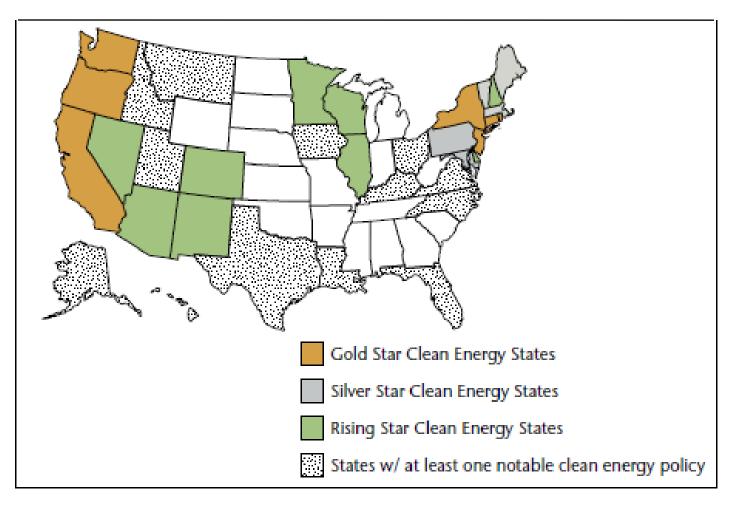
1mg


www.EFI.org



http://maine.gov/dep/rwm/homeowner/fluorescent.htm

Coal-Fired Electricity Generation

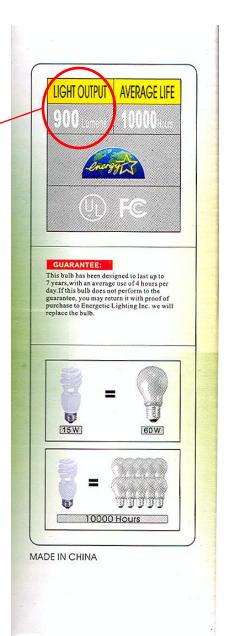


The "Green" house effect explained:

Oc Heller, Green Bay Press-Gaze

America's Clean Energy Stars

For a full listing of the states and how their policies were rated, see Table 9, page 32.


http://www.environmentamerica.org/home/reports/report-archives/new-energy-future/new-energy-future/americas-clean-energy-stars-state-actions-leading-america-to-a-new-energy-future

Choose A Light Guide

3 Valuable Pieces of Information

Lumens

Watts

Life

Use the box as a teaching aid with customers

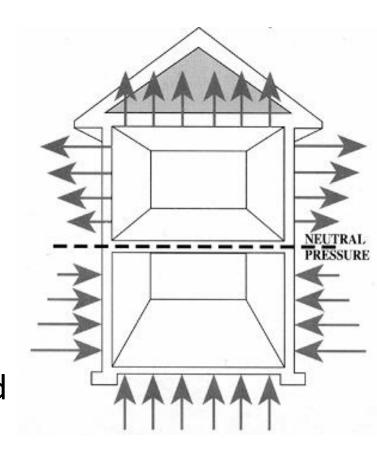
CFL Savings Calculator

energy

Home > Products > Lighting > CFLs > Savings

Summary of benefits for changing out 1 60W incandescent to a 15W cfl

Initial cost difference	\$3
Life cycle savings	\$65
Net life cycle savings	\$62
(life cycle savings - add'l cost)	
Simple payback of additional cost (years)	0.3
Life cycle energy saved (kWh)	450
Life cycle air pollution reduction (lbs of CO ₂)	691
Air pollution reduction equivalence	0.06
(number of cars removed from the road for a yr)	
Air pollution reduction equivalence (acres of forest)	0.09
Savings as a percent of retail price	1767%


Excel Spreadsheet at:

http://www.energystar.gov/index.cfm?c=cfls.pr_cfls_savings

Baseload and Building Science

One example:

- Recessed lights are holes in the envelope, most of which leak air
- Local hot spot enhances exfiltration forces
- A 13 watt bulb increases air flow through a leaky can by 60% when it's on, a 50 watt bulb by 170% and a 100 watt bulb by 400%!

Telltale Signs in the Snow

Can Light Above Bed in MBR

- Customer complained about cold air in bedroom
- IR spot radiometer with laser pointer
- Reveals non-trivial problem that's clear to all (including customer)
- IAT = 70F; OAT = 25F; Can = 43F
- Warm air rises, cold air descends!

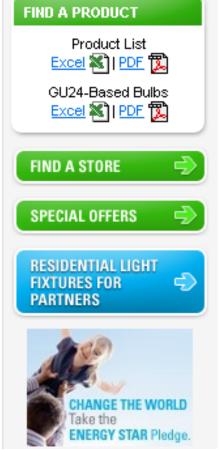
Larry Kinney, Synertech Systems Inc

Hard-wired Fixtures

Residential Light Fixtures for Consumers

(Are you a partner? For Partners)

By replacing the five most frequently used light fixtures in your home with ENERGY STAR qualified models, you can save \$70 each year in energy costs. Light fixtures that have earned the ENERGY STAR combine quality and attractive design with the highest levels of energy efficiency available today.


Examples of ENERGY STAR Qualified Fixtures

Earning the Government's ENERGY STAR

ENERGY STAR Qualified Fixtures:

- Use 1/4 the energy of traditional lighting.
- Save money on energy bills and bulb replacements, with bulbs that must last at least 10,000 hours (about seven years of regular use).
- Distribute light more efficiently and evenly than standard fixtures.
- Come in hundreds of decorative styles including portable fixtures such as table, desk and floor lamps — and hard-wired options such as front porch, dining room, kitchen ceiling and under-cabinet, hallway ceiling and wall, bathroom vanity fixtures, and more
- Deliver convenient features such as dimming on some indoor models and automatic daylight shut-off and motion sensors on outdoor models.
- Can be found at most home centers, lighting showrooms, and specialty stores.
- Carry a two year warranty double the industry standard.

http://www.energystar.gov/index.cfm?c=fixtures.pr_light_fixtures

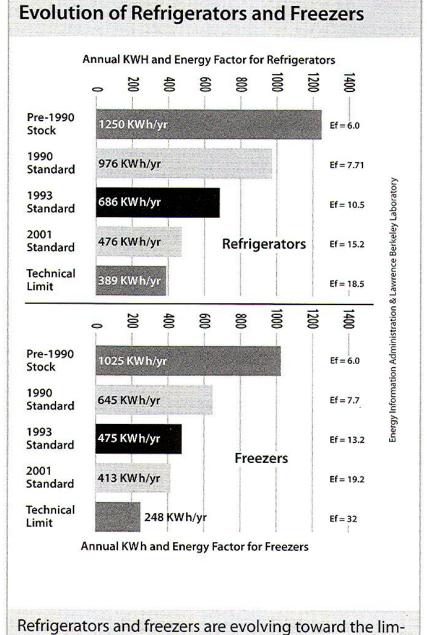
High Use- Dirty Photocell

A. Tamasin Sterner, Pure Energy

Holiday Hell-o

There is seasonal variation!

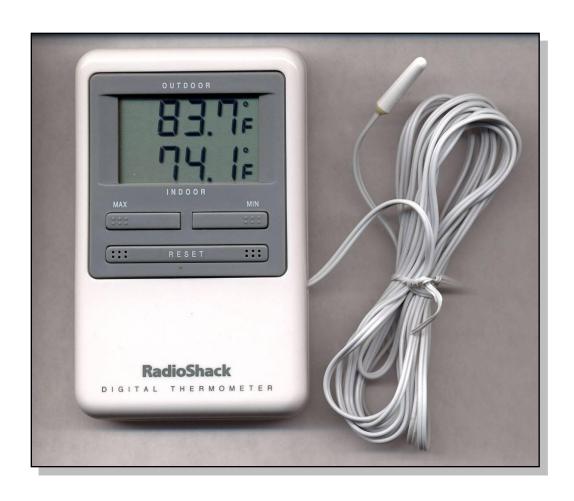
Occupant Based Savings Strategies


- Use natural light whenever possible
- Turn lights off when not needed especially anything left on 24/7
- Consider photo and occupancy sensors
- Select lighting to fit each task or situation
- Use a low watt nightlight instead of a main light
- Use light colored lampshades/reflector cans
- Clean bulbs and fixtures for brightest light

GE Refrigerator circa 1934

Refrigerator Energy Use History

- Older refrigerators used an average of 1250 kWh/year and cost \$125 to operate for the year.
- Newer refrigerators use an average of 410 kWh/year and cost \$41 to operate for the year.


Refrigerators and freezers are evolving toward the limits of current compressor and insulation technology.

Factors Affecting Energy Use

- Size
- Features
- Age
- Ambient air temperature
- Control settings
 - Thermostats
 - Anti-sweat (energy saver) switch
- Loading patterns
- Covered containers
- Condition of door gaskets
- Cleanliness of coils
- Door openings

Safe and Efficient Temperatures

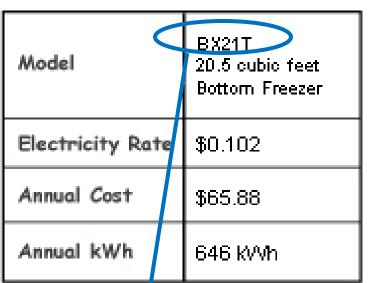
Desired Temperatures:

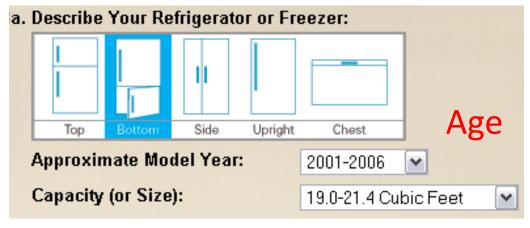
Fresh food: 36-40°F Freezer: 0-5°F

- Measure temperatures in the middle of the fresh food and freezer compartments
- Use standard or digital thermometers. A non-contact thermometer is <u>not</u> suitable for testing the temperatures inside refrigerators.

Replacement Criteria Is it a good return on investment (ROI)?

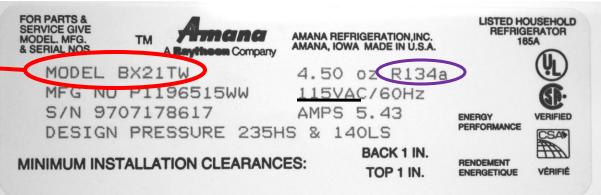
Annual Energy Use as determined by:

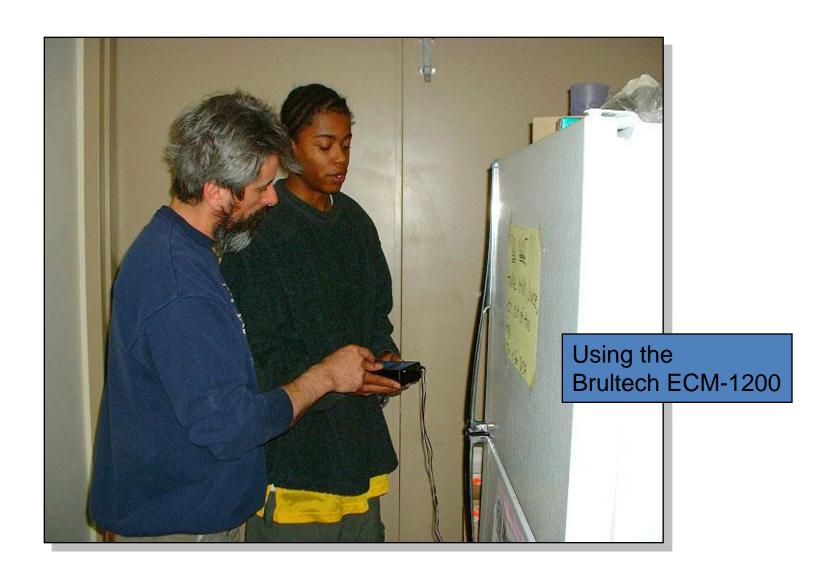

- Nameplate information & look up in data base
- Age
- Refrigerant R-134a
- Metering 2 hours preferred
- Broken hardware failure, constant running, insufficient cooling


Refrigerator Dataplate &

www.energystar.gov

Your Information


Style

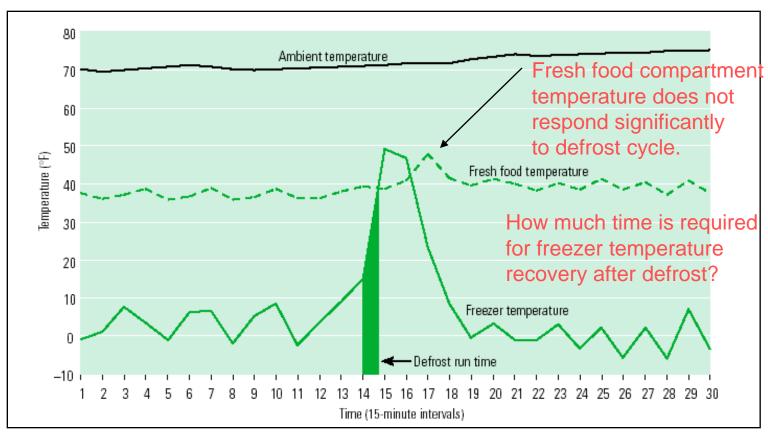

Size

Mfg

Model

If You Meter Refrigerators

kiloWatt Hour Meters

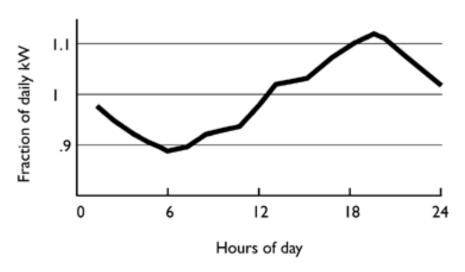

Brultech ECM- 1220b	Energy Consumption Mandar / Legary ProJ. = 30 Days ProJ \$ 29.80 ECM 1220 BHUZECAL ESC \$ \$ \$EL	www.brultech.com Volts, Watts, Elapsed time, kWh/period Total cost for period Dual or 240V appliance metering		
Kill A Watt EZ	PALAMAT ^M 22 \$250 f III III III III III III III III III II	www.p3international.com Volts, Amps, VA (Watts), Hertz, Power Factor kWh, Elapsed Time		
Brand Electronics, Model 20-1850	Digital Power Meter	Watts, kWh, Elapsed time Cost per month, Total cost Peak power, Amps, Power factor		
Watts Up? PRO Meter	SELECT WODE	www.dom.com/products Watts, kWh, Elapsed time Cost per month, Total cost Peak power, Amps, Power factor		

Refrigerator Testing Tips

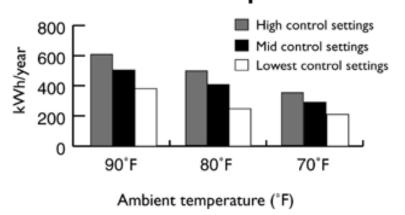
- If you interrupt a compressor cycle, wait 8 minutes before plugging it back in
- If door is closed and you still have 40W on the meter, perhaps the door switch is broken or the anti-sweat heater is running
- The usual running range (compressor on) is 200-400
 Watts. Newer refrigerators draw about 150 Watts
- Watch for defrost periods (~400 Watts)
- Unplug a refrigerator to clean the coils

Automatic Defrost Cycle

(14.4 ft³ GE unit, 355 Btu for 13.45 minutes)

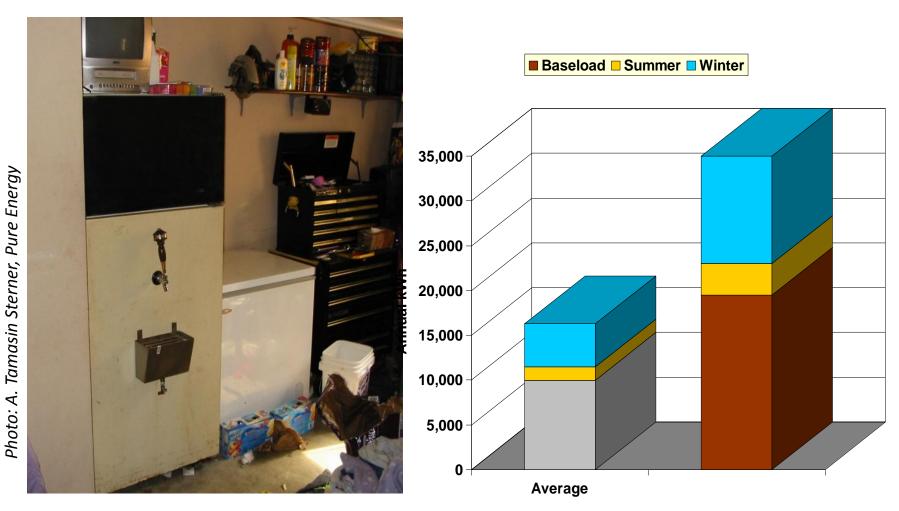


Source: Kinney and Belshe, *Refrigerator Replacement in the Weatherization Program: Putting a Chill on Energy Waste*. E Source, September 2001, page 16.


Other Confounding Factors

(NJ Comfort Partners Program)

Refrigerator Energy Consumption (Daily Pattern)


Maytag Energy Consumption vs. Control Settings and Ambient Temperature

Best Practice is to adjust for:

- Room temperature
- Monitoring time of day

Get Rid of 2nd Fridges!

Beer fridge & freezer in heated garage is an expensive choice

Alabama	\$0.0902	Montana	\$0.0874
Alaska ———	\$0.1506	Nebraska	\$0.0751
Arizona	\$0.0942	Nevada	\$0.1158
Arkansas	\$0.0874	New Hampshire	\$0.1480
California	\$0.1433	New Jersey —	\$0.1384
Colorado	\$0.0909	New Mexico	\$0.0897
Connecticut —	\$0.1850	New York	\$0.1690
Delaware	\$0.1317	North Carolina	\$0.0930
Dist. Of Columbia	\$0.1062	North Dakota	\$0.0734
Florida	\$0.1122	Ohio	\$0.0946
Georgia	\$0.0895	Oklahoma	\$0.0836
Hawaii ———	\$0.2300	Oregon	\$0.0795
Idaho ———	\$0.0623	Pennsylvania	\$0.1080

Replacement Savings

old op cost – new op cost = savings/yr

Purchase Price / savings \$/yr = simple payback in years

and "Savings" = tax free income!

Calculating Payback Fridge/Freezer Removal

Annual Cost	\$163.38
Annual kWh	1,556 kWh

kWh/yr x \$/kWh = operating cost/year = annual Savings for **removing unit**

Illinois	\$0.0973	Rhode Island	\$0.1408
Indiana	\$0.0813	South Carolina	\$0.0916
Iowa	\$0.0935	South Dakota	\$0.0802
Kansas	\$0.0817	Tennessee	\$0.0773
Kentucky	\$0.0711	Texas	\$0.1250
Louisiana	\$0.0934	Utah	\$0.0796
Maine	\$0.1486	Vermont	\$0.1396
Maryland	\$0.1112	Virginia	\$0.0867
Massachusetts =	\$0.1645	Washington	\$0.0718
Michigan	\$0.1014	West Virginia	\$0.0656
Minnesota	\$0.0890	Wisconsin	\$0.1068
Mississippi	\$0.0928	Wyoming	\$0.0782
Missouri	\$0.0745	United States	\$0.1052

Occupant Based Savings Strategies

- GET RID OF 2nd, 3rd, 4th UNITS
- Set controls to avoid over-cooling
- Keep it as cool as possible—away from stove, heat registers, direct sunlight
- Understand and use the energy saver or moisture control switch if present
- Be sure the door closes tightly after opening
- Keep containers covered
- Allow air to circulate freely around the unit and clean the condenser coils

Water Use Quiz

- What percent of the world's water is fresh?
- UNICEF announced that humans need about how many gallons of clean water a day to survive?
- What is average daily American household use?
- How much more is this than other developed nations use?

EPA WaterSense

WaterSense Home

Find A Product

Partner With Us

Save Water

WaterSense Awards

Basic Information

Where You Live

What You Can Do

Newsroom

Related Links

Publications

En Español

Frequent Questions

For KIDS

U.S. ENVIRONMENTAL PROTECTION AGENCY

WaterSense*

Contact Us | Print Version | Search:

GO

EPA Home > Water > Wastewater > WaterSense

WaterSense, a partnership program sponsored by the U.S. Environmental Protection Agency, makes it easy for Americans to save water and protect the environment. Look for the WaterSense label to choose quality, water-efficient products. Many products are available, and don't require a change in your lifestyle. Explore the links below to learn about WaterSense labeled products, saving water, and how businesses and organizations can partner with WaterSense

When Every Drop Counts We Count on Our Partners.

>>> Learn about our 2008 Partners of the Year

Find a Product

Bathroom Sink Faucets

Flushing Urinals

High-Efficiency Toilets

Landscape Irrigation Services

New Homes

Showerheads

Weather- or Sensor-Based

Partner With Us

Join WaterSense

Promotional Partners

Landscape Irrigation Professionals

<u>Manufacturers</u>

Retailers & Distributors

Meet Our Partners

Save Water

Test Your WaterSense

Why Water Efficiency?

Benefits of Water **Efficiency**

Use Your WaterSense

For Teachers-Educational Materials

WaterSense Partner

Highlights

Fix a Leak Week

Winter 2009 Issue of the WaterSense

Current

2009 WaterSense Partner of the Year Applications Released

Draft Flushing Urinal

Specification Announced

Household Hot Water Use

Buildings Energy Data Book: 8.2 Residential Sector Water Consumption

September 2008

8.2.4 Per Capita Use of Hot Water in Single Family Homes by End Use (Gallons per Capita per Day) (1)

Fixture/End Use	Average gallons per capita per day	Household Use gallons per day	Percent of Total Hot Water Use	Percent of End Use that is Hot Water
Toilet	0.0	0.0	0.0%	0.0%
Clothes Washer	3.9	10.1	15.5%	27.8%
Shower	6.3	16.4	25.1%	73.1%
Faucet	8.6	22.4	34.2%	72.7%
Other	0.0	0.0	0.0%	35.1%
Bath	4.2	10.9	16.7%	78.2%
Dishwasher	0.9	2.3	3.6%	100%
<u>Leaks</u>	1.2	3.1	4.8%	26.8% ←
Total	25.1	65.2	100%	39.6%

Note(s): 1) Based analysis on 10 single family homes in Seattle, WA

Sources: 2000 Residential End Uses of Hot Water in Single-Family Homes from Flow-Trace Analysis

http://buildingsdatabook.eren.doe.gov/docs/xls_pdf/8.2.4.pdf

What Affects Hot Water Use?

- Leaks
- The number of occupants & habits
- Difference (ΔT)
 between incoming &
 hot water temperature
- Fixture flow rate
- Appliance type and style

- Water heater energy factor (EF)
- Water heater tank insulation
- Distribution piping design & location
- Climate and localized ambient temperature
- Time of use options

Energy Star

Appliances

Heating & Cooling

Water Heaters

Gas Condensing

Heat Pump

High-Efficiency Gas Storage

Solar

Whole-Home Gas Tankless

Home Electronics

Lighting

Commercial Food Service

Office Equipment

- Purchasing & Procurement
- Interested in Partnering?

Join ENERGY STAR

Residential Water Heaters

From warm showers to clean dishes, we count on hot water. In fact, the average household spends \$400-\$600 per year on water heating - making it the second largest energy expenditure behind heating and cooling.

Get your energy bills out of hot water.

Most Americans have conventional water heaters that are barely more efficient than ones sold 20 years ago. Today's new **ENERGY STAR qualified water heaters** include smart design enhancements that offer significant improvements in efficiency and performance. Depending on the technology you choose, you can cut your water heating costs in half!

Water Heater Technology	Average Annual Savings*	
High-Efficiency Gas Storage	\$30	
Gas Condensing	\$110	
Whole-Home Gas Tankless	\$115	
Solar	\$220	
Heat Pump	\$290	
* Savings for average household of 2.6 people.		

Five types of water heaters can now earn the ENERGY STAR.

Find the one that's right for you

Don't get burned, plan ahead.

A water heater lasts about 10-15 years, and when it fails it can leave you with a big mess. When in a rush to replace, it's hard to evaluate options and consumers often end up with the least efficient choice. If you're one of the 27 million households with a water heater that's more than ten years old, consider replacing it with an ENERGY STAR qualified model before it fails. By acting early you have more control of your purchase and can start saving money right away.

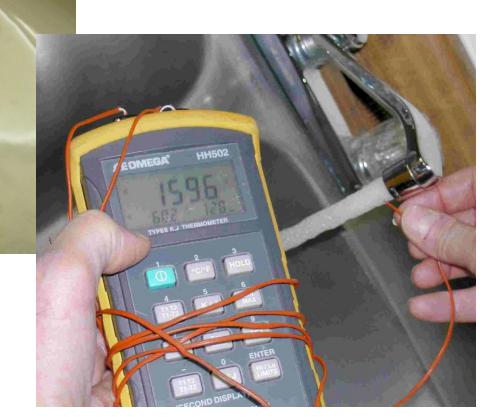
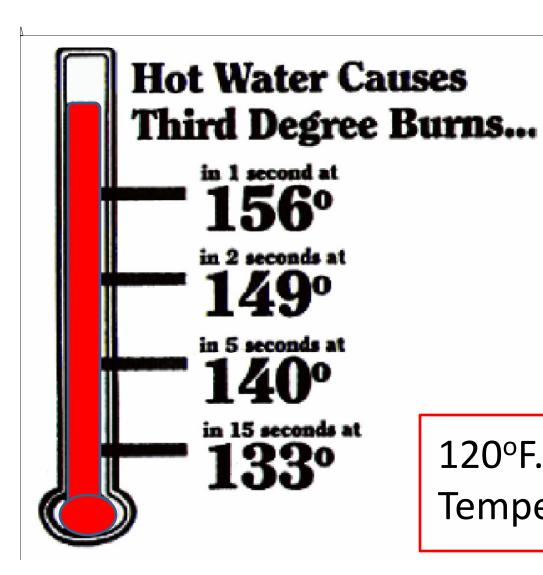
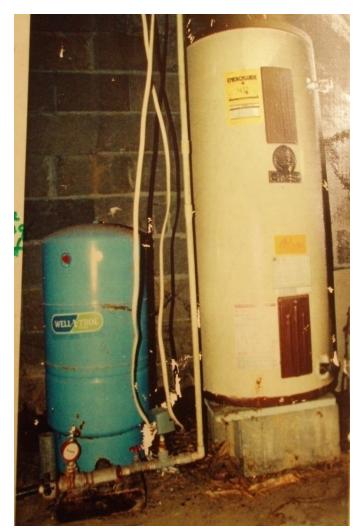



Photo: Larry Kinney


Too Hot Water is Dangerous

Children & elderly are at greatest risk for injury

120°F. Recommended Temperature for most

Insulate Tank & Piping

Write date & Tstat setting on tank when setback to track for changes & simplify adjustments. Bottom board insulation works!

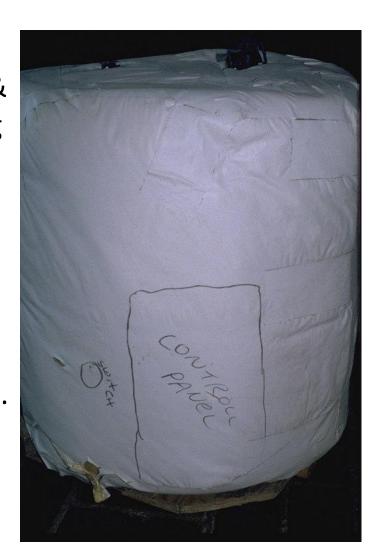


Photo: Rana Belshe

Flow – Gallons per Minute (gpm)

MicroWeir

OR... a stop watch & a gallon jug. If it fills in less than 2 minutes, it is likely a candidate for replacement!

Showerheads:

2.5 gpm is the rule

Less is better!

\$10 1.2 gpm Real Goods

(with pause button)

\$40 1 gpm Bricor

Household Water Use – Not only Hot

Water-Related Products

Model #: Click for list

V

With current technologies the benefits of water conservation can be realized without any sacrifice of comfort or convenience. Conservation of water can help to insure that communities have an adequate supply of clean drinking water, with enough left over for wildlife and recreational uses. Reduced water consumption can extend the life of wells, and is good for water treatment facilities and septic systems as well. Finally, since water use is frequently heated water use, effective water conservation measures are also likely to lead to reduced energy bills as well.

Accessories

Kitchen Aerators/Sprays

Toilet Water-Savers

Bath Faucet Aerators

Showerheads: Fixed Mount

Showerheads: Handheld

http://www.energyfederation.org/consumer/default.php/cPath/27

Use Cold Water for Laundry

Water Temperature Setting for Clothes Washer (millions of households)

Wash Cycle

• Hot	6.2
• Warm	49.7
• Cold	28.2
Rinse Cycle	
Hot	1.4
• Warm	16.6
• Cold	66.1
No Washing Machine	22 9

Source: www.projectlaundrylist.org

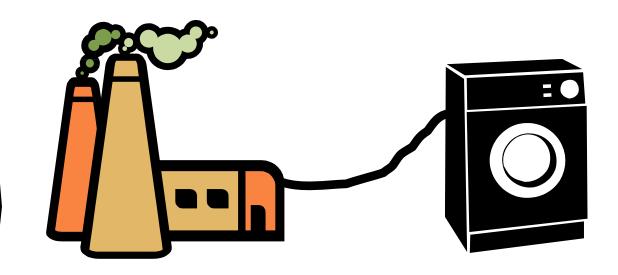
Use of Clothes Washer

(millions of U.S. households)

- Loads of Laundry Washed Each Week
 - 1 Load or Less...... 6.8
 - 2 to 9 Loads...... 65.1
 - 10 to 15 Loads...... 9.6

www.projectlaundrylist.org

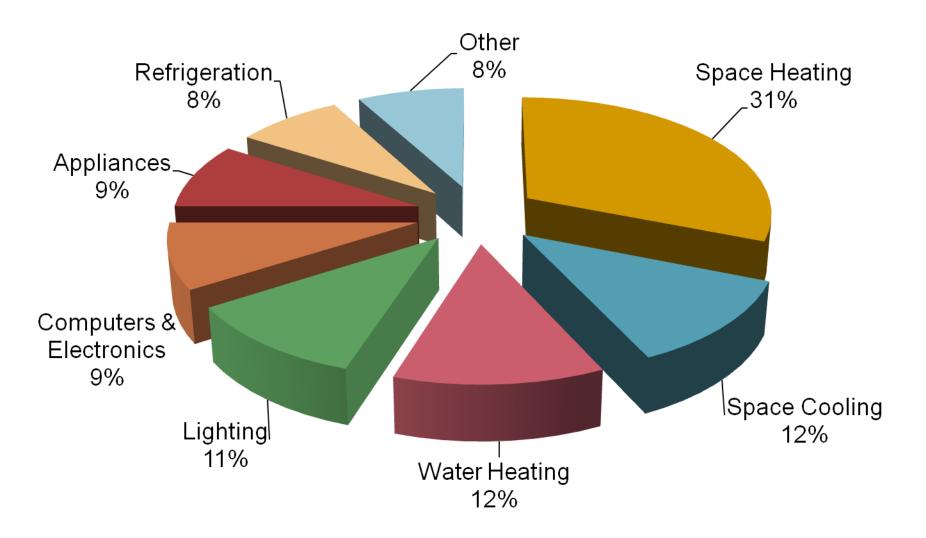
Use of Clothes Dryer


(millions of U.S. households)

- Use a Clothes Dryer..... 78.8
 - Every Time Clothes are Washed... 63.5
 - Some, but not All, Loads...... 12.7
 - Used Infrequently...... 2.7
- No Clothes Dryer.....28.2

SIMPLE FACTS

DRYERS ARE RESPONSIBLE FOR 6-10% OF DOMESTIC ELECTRICITY USE.

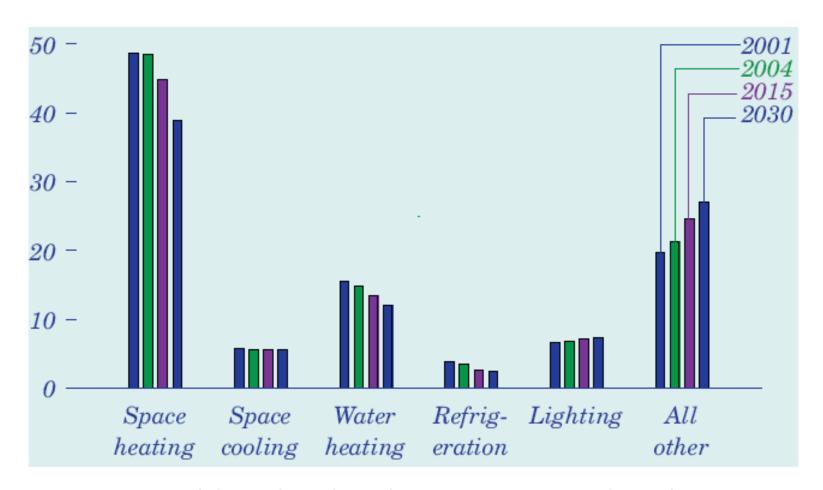

Occupant Based Savings Strategies

- Fix all leaks hot or not
- Keep thermostat at safe & efficient setting
- Reduce standby losses with hot water use
- Limit use of hot water when doing laundry or cleaning
- Take shorter showers
- Shower rather than bath
- Turn water heater thermostat down or off for vacations

- Treat water as the precious resource it is
- Use only as much water as you need
- Harvest water while waiting for hot to arrive
- Turn water off when not using
- Manage outdoor H2O use: washing car & irrigation
- Manage your Water Footprint

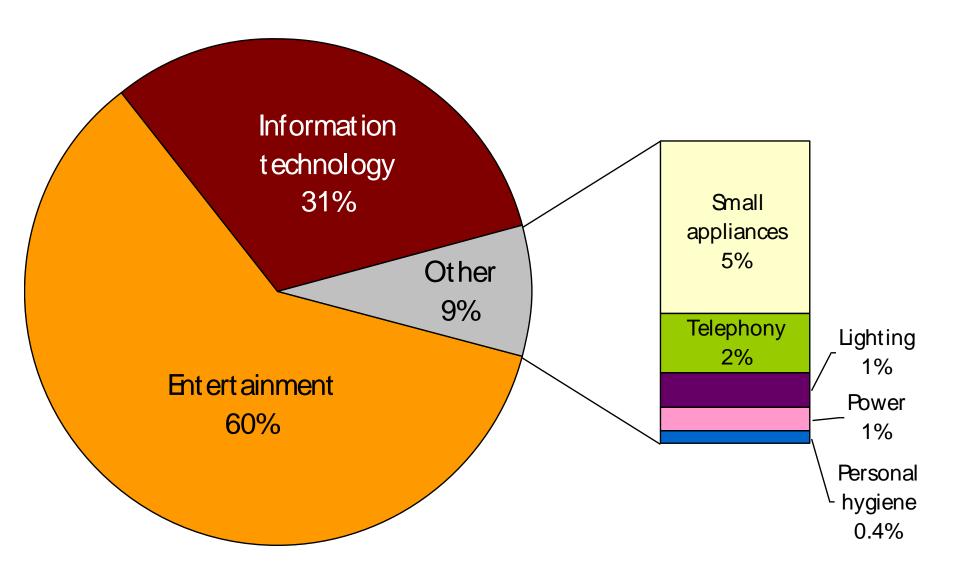
http://www.waterfootprint.org/?page=files/WaterFootprintCalculator

What Does My Bill Pay For?



Source: 2007 Buildings Energy Data Book

Reasons for High Baseload


- Time on 24/7 adds up quickly
- High demand / power (kW)
- Poor control strategies
- Not known to be operating
- Faulty equipment
- Intermittent use
- Hidden loads
- Lots of people in the household
- Lots of things plugged in

Plug Load Energy Use is Increasing

U.S. delivered residential energy consumption by end use, 2001, 2004, 2015, and 2030 (million Btu per household)

Plug Load Energy Use by Product Category

Power Settings & Mode

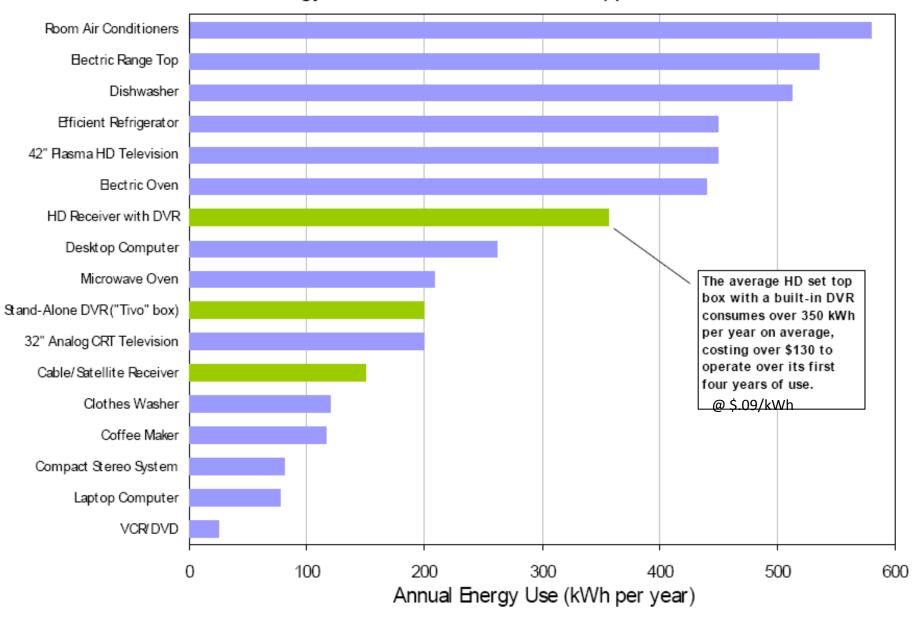
ON	"OFF"	REALLY OFF
 Active power Low power mode Indeterminate power Sleep/hiberna 	Vampire	 No power Unplugged Power switched off with strip or other control device

Anything with a remote, display, touchpad, or light is using power even when turned "off"

Power: On vs Off - Ent. System # 1

DEVICE	POWER USE (W) ON	POWER USE (W) "OFF"/Standby	
ENERGY STAR 37" LCD TV	149	1	
VCR/DVD	17	7	
Cable Box, HDDTV DVR	35	25	
Stereo Home Theater (audio)	65	2	
CD Player	10	2	
Sub Woofer	15	7	
TOTAL	291 Watts	44 Watts	

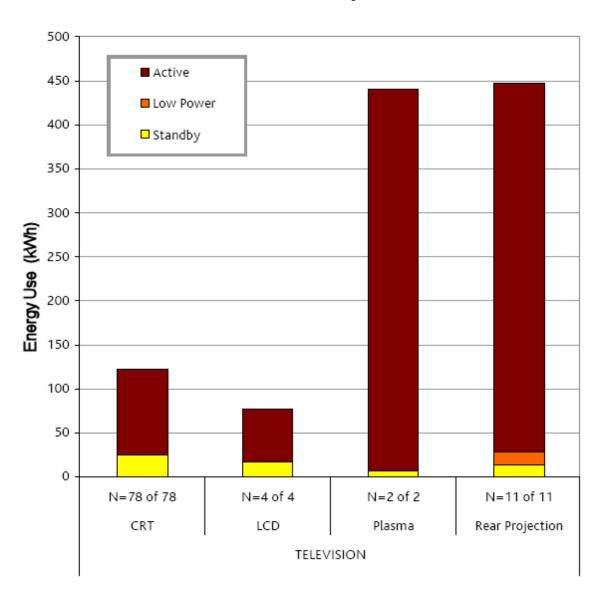
Data: Danny Parker, 2008 FSEC


Energy: COST when On & Off

	Day	Month	Year
On Hours	3	90	1095
kWh	< 1	24	290
COST ON	\$0.08	\$2.40	\$29.00
Off Hours	21	630	7665
kWh	< 1	28	333
COST OFF	\$0.09	\$2.80	\$33.30

Based on watching TV 3 hrs/day

Note powerstrip


Annual Energy Use of Common Household Appliances

[&]quot;NRDC Study of Set Top Box and Game Console Power Use", Peter Ostendorp, Ecos Consulting, May 2007

Sample Annual kWh of TVs by Mode

- Standby power is similar regardless of TV type or size.
- Newer TVs use a lot more energy than older ones.
- technologies (plasma & rear projection) tend to be used more and are frequently part of a larger entertainment set up.

Source: Ecos Consulting, "Final Field Research Report", 2007

Technology Ho! Shop Smart

Philips' Eco TV 2008

0.15W off/standby

- Ambient light sensor to brighten & dim
- Dynamically lowers brightness in dark scenes

"The 42PFL5630D uses less power than any 42-inch LCD we've seen."


David Katzenmeir, 2008 Consumer Electronics Show

Manage TV Screen Settings

Photo: Rana Belshe

Game Console Power Use

Activate Power Management for Gaming

Photo: Rana Belshe

Power modes vary

- Active power
- Low power -Sleep
- Off Standby

- Up to 60% of <u>office</u> personal computers are left on overnight
- Average desktop PC system draws 140W
- Monitor accounts for about one half the use
- On average, an ENERGY STAR computer uses 70% less electricity than standard unit—but only if power management features are activated

Manage Computer Power Use

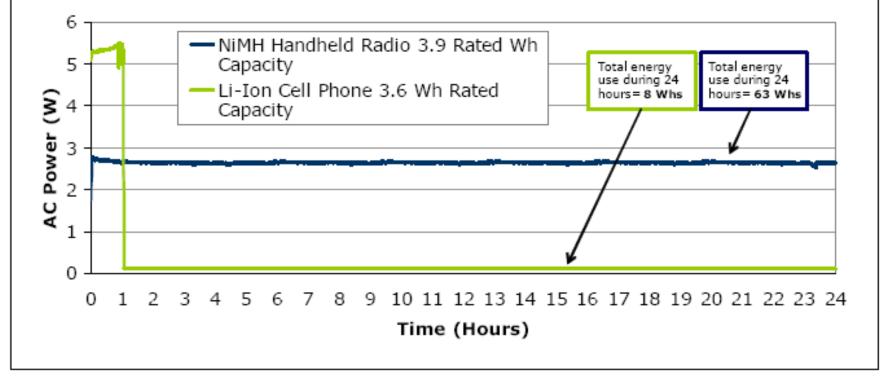
- Teach everyone that it makes sense to Turn off monitor
 if not using for > 5-20 min. and both CPU and monitor
 if not using for > 30-60 min.
- Use power strips for positive "off" and control of peripherals
- Learn about and teach others about how to activate Power Management functions
- Maximize sleep features in the operating system

Check DOE & www.energystar.gov for great stuff on this.

Advanced Power Strip Options

http://www.p3international.com

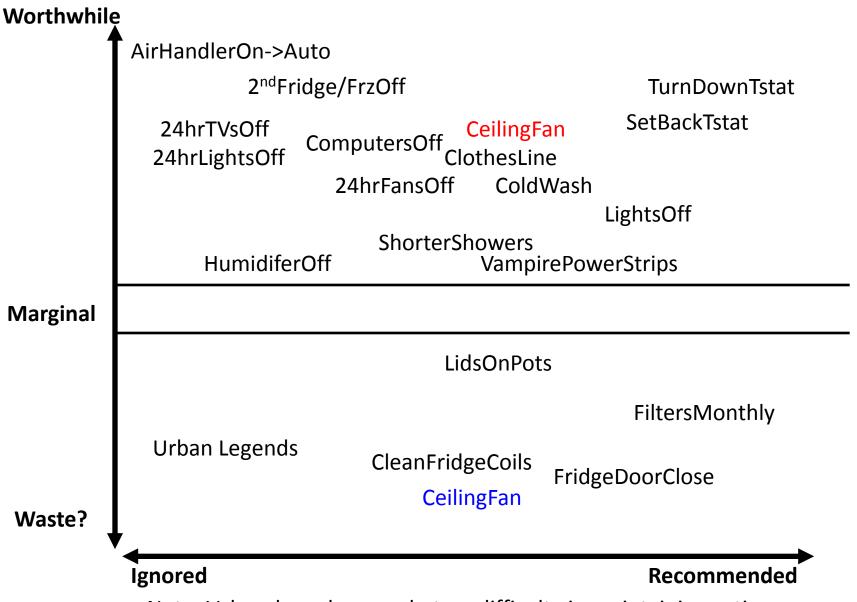
http://wattstopper.com



http://www.smarthomeusa.com/Shop/Smart-Energy/Smart-Strip

Battery Types & Chargers Matter

Battery chargers with similar charging capacity use varying amounts of energy to charge & maintain the battery


Occupant Based Savings Strategies

- Manage control settings for maximum efficiency
- Turn equipment off when not actively using
- Minimize standby use with power strips, switched outlets, unplugging, etc.
- Unplug devices you don't use
- Buy the most efficient products possible
- Purchase less stuff

Influencing Change

- Identify all possible opportunities to save
- Put costs on operations and equipment use
- Recognize what customer cares about and will/won't do
- Focus on biggest users
- Prioritize where you spend your time
- Present only options that make sense and offer a return on investment

Priorities: Recommended vs. Worthwhile: Actions

Note: Values based somewhat on difficulty in maintaining action

Feedback Welcome!

Thanks to:

A. Tamasin Sterner

www.PureEnergyAudits.com

and

Larry Kinney

www.synertechsystems.com

for their work and collaboration through the years

Rana Belshe
Fairchild, Wisconsin
715-334-2707
ranabelshe@centurytel.net

We Looked: We Saw...

- High occupancy
- Anything running 24/7: air handler, lighting
- Extra lighting
- Multiple refrigerators and/or freezers
- Broken appliances
- Failing motors
- Malfunctioning equip: well, septic, sump pumps
- Heavy-duty battery chargers
- Home entertainment rooms
- Large/multiple aquariums

- Off-site but connected loads
- Waterbed heaters
- Dehumidifiers set too high
- Forgotten heaters in crawl spaces, garage, porches
- Grow lights
- Ice makers running without water hookup
- Washers always using hot water
- Ventilation equipment
- Pressure tank problems
- Current leaking to earth: water heater, yard line, well pump

This is a bonus list of circumstances associated with high baseload use. Though not part of a "basics" course, it may help as you are trouble-shooting a job.